Closed-form solution for a mode-III interfacial edge crack between two bonded dissimilar elastic strips

نویسندگان

  • Xiangfa Wu
  • Yuris A. Dzenis
  • Xiang-Fa Wu
چکیده

A closed-form solution is obtained for the problem of a mode-III interfacial edge crack between two bonded semi-infinite dissimilar elastic strips. A general out-of-plane displacement potential for the crack interacting with a screw dislocation or a line force is constructed using conformal mapping technique and existing dislocation solutions. Based on this displacement potential, the stress intensity factor (SIF, KIII) and the energy release rate (ERR, GIII) for the interfacial edge crack are obtained explicitly. It is shown that, in the limiting special cases, the obtained results coincide with the results available in the literature. The present solution can be used as the Green’s function to analyze interfacial edge cracks subjected to arbitrary anti-plane loadings. As an example, a formula is derived correcting the beam theory used in evaluation of SIF (KIII) and ERR (GIII) of bimaterials in the double cantilever beam (DCB) test configuration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interfacial edge crack between two bonded dissimilar orthotropic strips under antiplane point loading

A closed-form solution is obtained for the interfacial edge crack between two bonded dissimilar orthotropic strips loaded by antiplane point loading in form of screw dislocation or line force. Conformal mapping and existing dislocation solutions are utilized for constructing the fundamental solution of the problem. The stress intensity factor (SIF) and the energy release rate (ERR) are obtained...

متن کامل

A semi-infinite interfacial crack between two bonded dissimilar elastic strips

This paper is concerned with a semi-infinite interfacial crack between two bonded dissimilar elastic strips with equal thickness. Solutions for the complex stress intensity factor (SIF) and energy release rate (ERR) are obtained in closed form under in-plane deformations. During the procedure, the mixed boundary-value problem is reduced by means of the conformal mapping technique to the standar...

متن کامل

Closed-Form Solutions for a Mode-III Moving Interface Crack at the Interface of Two Bonded Dissimilar Orthotropic Elastic Layers

An integral transform technique is used to solve the elastodynamic problem of a crack of fixed length propagating at a constant speed at the interface of two bonded dissimilar orthotropic layers of equal thickness. Two cases of practical importance are investigated. Firstly, the lateral boundaries of the layers are clamped and displaced in equal and opposite directions to produce antiplane shea...

متن کامل

Two semi-infinite interfacial cracks between two bonded dissimilar elastic strips

The complex stress intensity factor and energy release rate are obtained for two semi-infinite interfacial cracks between two bonded dissimilar elastic strips with equal thickness under inplane deformations. During the procedure, by means of conformal mapping technique, the mixed boundary-value problem is reduced to a standard Riemann–Hilbert problem, which is further solved in closed-form. In ...

متن کامل

The mixed mode fracture mechanics in a hole plate bonded with two dissimilar plane

In the present research, the mixed-mode fracture mechanics analysis in a plate with central hole under tensile loading is considered. It is assumed that a plate containing two symmetrical hole-edge cracks is bonded with two dissimilar planes. The stress intensity factors at the crack tips are calculated. The problem is modeled in Casca software and this model is analyzed with Franc software. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013